
HOMEWORK 8

Due date: Monday of Week 9

Exercises: 2, 4, 5, 6, 7, 9, 10, 11, pages 366-367
Exercises: 3, 6, 7, 8, 17, pages 373-375.

For problem 7 of page 373, go through the proof of Theorem 3, page 369. Of course you can
orthogonal diagonolize the corresponding symmetric matrix. But here, try to practice the procedure
given in the proof of Theorem 3.

Let V be a finite dimensional inner product space over R. Note that the normal operator T on
V is more complicate because χT is not necessary a product of linear factors, and thus T is not
(orthogonally) diagonalizable over R in general. Actually, we have seen that a normal linear operator
T is orthogonally diagonalizable if and only if it is self-adjoint. But many other properties of normal
vectors still hold. Actually, the following are equivalent

(1) T is normal, i.e., TT ∗ = T ∗T ;
(2) (Tα|Tβ) = (T ∗α|T ∗β), for all α, β ∈ V ;
(3) ||Tα|| = ||α||, for every α ∈ V ;

(4) T1 commutes with T2, where T1 = T+T∗

2 , T2 = T−T∗

2 ;
(5) T ∗ = TU for some orthogonal operator U ∈ End(V ), where U is said to be orthogonal if

UU∗ = I and U is a linear operator on real vector space;
(6) U commutes with N , where T = UN is the polar decomposition of T with N non-negative

and U orthogonal;
(7) there exists a polynomial f ∈ R[x] such that T ∗ = f(T ).

Many of the above equivalences were proved in class; the proofs of the rest are similar to the complex
case. Notice the difference between real and complex case. Over the complex field, for a normal
operator T , there exists a basis B such that [T ]B is diagonal. Over the real field R, this statement
is no longer true. The simplest form of [T ]B is given in Theorem 17 and 18.

Problem 1. Let V be a finite dimensional inner product space over R. Let T ∈ End(V ).

(1) Show that T is normal if and only if there exists a polynomial f ∈ R[x] such that T ∗ = f(T ).
(2) Consider the matrix

A =

1 1 0
0 1 1
1 0 1

 ∈ Mat3×3(R).

Chek that A is normal. Moreover, find a polynomial f ∈ R[x] such that At = f(A).
(3) Let T : R3 → R3 be the linear map defined by the matrix A. Find an orthonormal basis B

of R3 such that [T ]B is of the formc a −b
b a

 ,

for a, b, c ∈ R.

Hint for (1), translate this to a problem on matrix and view the corresponding matrix in Matn×n(C),
then use the conclusion in the complex case. Then show the corresponding polynomial is in fact in
R[x]. For (2), just go through the proof of (1) and specialize everything to this example. Note that
part (1) gives a different proof of Theorem 19, page 354.
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1. Various decompositions

It is almost the end of linear algebra part of this course. It is a good time to review what we
have learned about various decompositions of matrices, which are important parts of linear algebra.
I will remind you those decompositions in the following, and it is helpful to keep a record of a proof
for each decomposition. We learned all of these in class or from HW problems.

1.1. Bruhat decomposition. Let F be a general field. Denote by Bn the subset of GLn(F )
consisting of upper triangular invertible matrices with entries in F . Let W ⊂ GLn(F ) be the subset
of permutation matrices. The set W was denoted by P in our previous HW. Recall that a matrix
g ∈ GLn(F ) is called a permutation matrix if in each row and each column of g, there is only one
nonzero term and that nonzero term is 1. Also recall that, we have a map

Sn → W

σ 7→ gσ =
[
eσ(1), . . . , eσ(n)

]
,

where Sn is the symmetric group on n-elements which consists of bijections σ : {1, 2, . . . , n} →
{1, 2, . . . , n}, ei is the column vector whose only nonzero entry is 1 and it is at the i-th position. See
HW 3 and HW 10 of last year. Recall that we have

gστ = gσgτ .

We also consider the special element wℓ ∈ W defined by

wℓ =


1

1

. .
.

1


Problem 2. Let A be a upper triangular matrix. Show that wℓAwℓ is lower triangular.

Proposition 1 (Bruhat decomposition). For any element g ∈ GLn(F ), there exists b1, b2 ∈ B and
w ∈ W such that g = b1wb2. The elements b1, b2 are not unique in general, but w ∈ W is uniquely
determined by g. In other words, we have the decomposition

GLn(F ) =
∐

w∈W

BwB,

where
∐

denotes disjoint union (which means BwB ∩Bw′B = ∅ if w ̸= w′).

The decomposition g = b1wb2 is equivalent to the LPU decomposition, which was in HW 3 of
last year. We did not check the uniqueness in our HW.

Problem 3. (1) Show that the Bruhat decomposition in Proposition 1 is equivalent to the LPU
decomposition in Problem 5, HW3 of last year.

(2) Prove the above Bruhat decomposition for n = 2, 3, 4 by proving the LPU decomposition
first. Also check the uniqueness part for w ∈ W in the decomposition for n = 2, 3, 4.

(3) Given g ∈ GLn(F ). Show that g has an LU decomposition (which means g = g1g2 for g1
lower triangular and g2 upper triangular) if and only if all of its principle minors are all
different from zero.

(4) Given g ∈ GLn(F ). Find a condition on g such that g has a decomposition g = b1wℓb2 for
b1, b2 ∈ B.

Part (3) is a result from our textbook (Lemma, page 326). You don’t need to submit a solution
of this but you should know how to prove it. Part (3) is here because it gives you a hint for (4).

1.2. C-R decomposition.

Proposition 2 (C-R decomposition). Let A ∈ Matm×n(F ) be a matrix of rank r. Then there exists
a matrix C ∈ Matm×r(F ) and a matrix R ∈ Matr×n(F ) such that A = CR.
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A special case of the above decomposition is when A has rank 1, then A = uv for u ∈ Matm×1(F )
and v ∈ Mat1×n(F ). If m = n, then from A = uv, we can get that A2 = tr(A)A. The existence
of the above C-R (which means column-row) decomposition was given in HW 5 of last year. Here
is another related fact. Let k be a position integer with k < r, then there does not exist matrices
C ∈ Matm×k(F ), R ∈ Matk×n(F ) such that A = CR.

Problem 4. Let A ∈ Matm×n(F ) be a matrix of rank r and let A = CR be a C-R decomposition
with C ∈ Matm×r and R = Matr×n. For any P ∈ GLr(F ), if we denote C ′ = CP ∈ Matm×r, R

′ =
P−1R ∈ Matr×n, then A = C ′R′ is another C-R decomposition. The question is: do we know
all C-R decomposition has the above form? In other words, suppose that A = CR = C ′R′ with
C,C ′ ∈ Matm×r, R,R′ ∈ Matr×n such that

A = CR = C ′R′.

Is there a matrix P ∈ GLr(F ) such that C ′ = CP and R′ = P−1R? If so, prove it. If not, find a
counter-example.

This is certain uniqueness of C-R decomposition. If you think this hard, try to consider some
examples with small m,n, r, for example, when m = n = 3 and r = 2.

1.3. Jordan decomposition.

Proposition 3 (Jordan decomposition). Let A ∈ Matn×n(F ) be a matrix such that µA is a product
of linear factors. There exists a unique diagonalizable matrix D ∈ Matn×n(F ) and a unique nilpotent
matrix N ∈ Matn×n(F ) such that DN = ND and A = D +N .

Moreover, we know that such D,N are polynomials of A. This is Theorem 13, page 222.

Proposition 4 (Jordan decomposition, semisimple version). Let F be a field of characteristic zero.
Let A ∈ Matn×n(F ) be a matrix. Then there exists a unique semi-simple matrix S ∈ Matn×n(F )
and a unique nilpotent matrix N ∈ Matn×n(F ) such that SN = NS and A = S +N .

This is Theorem 13, page 267.

1.4. Iwasawa decomposition. Let F = R or C. We consider the group GLn(F ). We still let Bn

be the upper triangular matrices in GLn(F ). Let Kn = On(R) if F = R and let Kn = U(n) if
F = C.

Proposition 5 (Iwasawa decomposition). We have GLn(F ) = Bn · Kn. In other words, for any
g ∈ GLn(F ), there exists an element b ∈ Bn and an element k ∈ Kn such that g = bk.

This is equivalent to Theorem 14 of page 305. Explain the equivalence between the above Propo-
sition and Theorem 14 of page 305.

Problem 5. Consider the matrix

g =

3 −1 2
0 0 9
4 7 11

 ∈ GL3(R).

Find a matrix b ∈ B3 and k ∈ O3(R) such that g = bk.

1.5. Singular value decomposition, polar decomposition and Cartan decomposition. Let
F = R or C. We consider the group GLn(F ). We still let An be the set of all diagonal matrices in
GLn(F ). Let Kn = On(R) if F = R and let Kn = U(n) if F = C.

Proposition 6 (Cartan decomposition). We have GLn(F ) = Kn ·An ·Kn. In other words, for any
g ∈ GLn(F ), there exists k1, k2 ∈ Kn and a ∈ An such that g = k1ak2.

This is just a slightly different way to say the singular value decomposition.

Proposition 7 (Polar decomposition). For any g ∈ GLn(F ), there exists a matrix k ∈ Kn and a
positive matrix p such that g = kp.

This is Theorem 14, page 342. Singular value decomposition and polar decomposition are closely
related.
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1.6. Schur decomposition. Let F = C and let Kn = U(n). Let Bn ⊂ GLn(F ) be the subset
consisting of upper triangular matrices.

Proposition 8 (Schur decomposition). For any g ∈ GLn(F ), there exists an element k ∈ Kn and
an element b ∈ Bn such that g = kbk−1.

This is Theorem 21, page 316. See also HW 6.
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